MATH 2028 Honours Advanced Calculus II 2022-23 Term 1 Problem Set 11

due on Dec 7, 2022 (Wednesday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Problems to hand in

1. Compute the area of the surface in \mathbb{R}^4 parametrized by

$$
g(u, v) = (u, v, u^2 - v^2, 2uv)
$$

with $(u, v) \in \mathbb{R}^2$ satisfying $u^2 + v^2 \leq 1$.

2. Let $\Omega \subset \mathbb{R}^3$ be the region bounded above by the sphere $x^2 + y^2 + z^2 = a^2$ and below by the plane $z = 0$. Compute

$$
\int_{\partial\Omega} xz \, dy \wedge dz + yz \, dz \wedge dx + (x^2 + y^2 + z^2) \, dx \wedge dy
$$

directly and by applying Stokes' Theorem.

3. (a) Suppose M and M' are two compact oriented k-dimensional submanifolds of \mathbb{R}^n with boundary, and suppose $\partial M = \partial M'$. Prove that for any $(k-1)$ form ω , we have

$$
\int_M d\omega = \int_{M'} d\omega.
$$

(b) Use (a) to compute $\int_M d\omega$ where M is the upper hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, oriented with outward-pointing normal having positive z-component and

$$
\omega = (x^3 + 3x^2y - y) dx + (y^3z + x + x^3) dy + (x^2 + y^2 + z) dz.
$$

Suggested Exercises

- 1. Check that the boundary orientation on $\partial \mathbb{R}^k_+$ is $(-1)^k$ times the usual orientation on \mathbb{R}^{k-1} .
- 2. Let C be the intersection of the cylinder $x^2 + y^2 = 1$ and the plane $2x + 3y z = 1$, oriented counterclockwise as viewed from high above the xy-plane. Evaluate

$$
\int_C y\ dx - 2z\ dy + x\ dz
$$

directly and by applying Stokes' Theorem.

3. Compute $\int_C (y - z) \, dx + (z - x) \, dy + (x - y) \, dz$ where C is the intersection of the cylinder $x^2 + y^2 = a^2$ and the plane $\frac{x}{a} + \frac{z}{b} = 1$, oriented clockwise as viewed from high above the xy-plane. 4. Let C be the intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane $x + y + z = 0$, oriented counterclockwise as viewed from high above the xy-plane. Evaluate

$$
\int_C 2z\ dx + 3x\ dy - dz.
$$

- 5. Let $\omega = y^2 dy \wedge dz + x^2 dz \wedge dx + z^2 dx \wedge dy$, and M be the solid paraboloid $0 \le z \le 1 x^2 y^2$. Evaluate $\int_{\partial M}\omega$ directly and by applying Stokes' Theorem.
- 6. Let M be the surface of the paraboloid $z = 1 x^2 y^2 \ge 0$, oriented so that the outward-pointing normal has positive z-component. Let $F(x, y, z) = (x^2z, y^2z, x^2 + y^2)$. Compute $\int_M F \cdot \vec{n} \, d\sigma$ directly and by applying Stokes' Theorem.
- 7. Compute $\int_M d\omega$ where M is the portion of the paraboloid $z = x^2 + y^2$ lying beneath $z = 4$, oriented with outward-pointing normal having positive z-component, and $\omega = y dx + z dy + x dz$.
- 8. Let $M = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 \le x_4 \le 1\}$, with the standard orientation inherited from \mathbb{R}^4 . Evaluate

$$
\int_{\partial M} (x_1^3 x_2^4 + x_4) \ dx_1 \wedge dx_2 \wedge dx_3.
$$

- 9. Let S be the portion of the cylinder $x^2 + y^2 = a^2$ lying above the xy-plane and below the sphere $x^2 + (y - a)^2 + z^2 = 4a^2$. Let C be the intersection of the cylinder and sphere, oriented clockwise as viewed from high above the xy -plane.
	- (a) Evaluate $\int_S z \, d\sigma$.
	- (b) Use (a) to compute $\int_C y(z^2 1) \, dx + x(1 z^2) \, dy + z^2 \, dz$.
- 10. Let C be the intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the plane $x + y + z = 0$, oriented counterclockwise as viewed from high above the xy-plane. Evaluate $\int_C z^3 ds$.

Challenging Exercises

- 1. Let $f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ be a smooth function whose graph is the surface S.
	- (a) Consider the area 2-form σ on S given by

$$
\sigma = \frac{1}{\sqrt{1+|\nabla f|^2}} \left(-\frac{\partial f}{\partial x} dy \wedge dz - \frac{\partial f}{\partial y} dz \wedge dx + dx \wedge dy \right).
$$

Show that $d\sigma = 0$ if and only if f satisfies the minimal surface equation:

$$
\left(1+\left(\frac{\partial f}{\partial y}\right)^2\right)\frac{\partial^2 f}{\partial x^2} - 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\frac{\partial^2 f}{\partial x \partial y} + \left(1+\left(\frac{\partial f}{\partial x}\right)^2\right)\frac{\partial^2 f}{\partial y^2} = 0.
$$

(b) Show that for any compact oriented surface $N \subset \mathbb{R}^3$, we have

$$
\int_N \sigma \leq \text{area}(N)
$$

and equality holds if and only if N is parallel to S .

- (c) Suppose further that $\partial N = \partial S$. Prove that area $(S) \leq$ area (N) .
- 2. (a) Prove that a k-dimensional submanifold with boundary $M \subset \mathbb{R}^n$ is orientable if and only if there is a nowhere-zero $k\text{-form}$ on $M.$
	- (b) Show that M is orientable if and only if there is a volume form globally defined on M .